6y^2-24-54=0

Simple and best practice solution for 6y^2-24-54=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6y^2-24-54=0 equation:



6y^2-24-54=0
We add all the numbers together, and all the variables
6y^2-78=0
a = 6; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·6·(-78)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{13}}{2*6}=\frac{0-12\sqrt{13}}{12} =-\frac{12\sqrt{13}}{12} =-\sqrt{13} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{13}}{2*6}=\frac{0+12\sqrt{13}}{12} =\frac{12\sqrt{13}}{12} =\sqrt{13} $

See similar equations:

| -19.7=x/7-2.2 | | 6x2-18=0 | | 3a+5a=-4(4) | | 3a+4a=-14 | | 3p+1=−p+5 | | -8x+15=-33 | | y/5+9.2=3.3 | | 36^2+27^2=c^2 | | 51^2+68^2=c^2 | | 4-1/3x=8;-12 | | 9x+3=3+3x | | 12^2+9^2=c^2 | | x+7=9-x;1 | | 14-x=-11 | | w-5/6=3/8 | | x=12-2 | | 16^2+12^2=c^2 | | 9-9x=12x | | 27=-3u-5u-27 | | (a)/(-6)+8=12 | | 9^2+b^2=10^2 | | 8^2+b^2=9^2 | | m-6÷4=15 | | 32.67=6g+3.93 | | (x+5)(2x-4)=120 | | 6^2+b^2=7^2 | | 1/3*f=2/9 | | 6^2+b^2=8^2 | | 3^2+b^2=8^2 | | 32.24=7g+3.65 | | 4(x=12)-5=79 | | 7^2+b^2=8^2 |

Equations solver categories